

A INTERNACIONALIZAÇÃO DA UNIVERSIDADE **EOFORTALECIMENTO DO ENSINO**

INVESTIGAÇÃO DA INFLUÊNCIA DE GÁS O₂ NA ELETRO-OXIDAÇÃO DE GLICEROL SOBRE NANOPARTÍCULAS DE Pt/C E Pt@Au

NASCIMENTO, Amanda dos Anjos.¹ (amandaanjos344@gmail) ¹ Bolsista PIVIC do curso de Química da Universidade Federal da Grande Dourados. ALENCAR, Leticia Machado.² (leticiamachado93@hotmail.com) ² Bolsista PPGQ do curso de Química da Universidade Federal da Grande Dourados. ZANATA, Cinthia Rodrigues.³ (cinthiazanata@gmail.com) ³ Bolsista PPGQ do curso de Química da Universidade Federal do Mato Grosso do Sul MARTINS, Cauê Alves.⁴ (cauealvesmartins@gmail.com) ⁴ Docente do curso de Química da Universidade Federal da Grande Dourados.

INTRODUÇÃO

A produção em grande escala de Biodiesel acarretou, para o mercado, um excesso de produção

Figura 3. Voltamogramas cíclicos de Pt/C e Pt@Au a 0,05 V s⁻¹ entre 0,05 e 1,0 V vs. ERH em 0,5 mol L⁻¹ H₂SO₄ + 0,2 mol L⁻¹ de glicerol. (a) Sistema saturado com N₂. (b) Sistema saturado

de glicerol (coproduto). Buscando novas opções de uso para este álcool, surgem alternativas quanto à sua utilização como substrato para eletrossíntese e combustível para células a combustível (CC).¹ Para a aplicação de glicerol em CCs de forma eficaz, é necessário conduzir a reação eletroquímica de forma seletiva e/ou melhorar a potência do conversor de energia por meio de um ânodo eficiente.² Normalmente, nos estudos apresentados na literatura sobre novos ânodos, para a reação de eletro-oxidação de glicerol (REOG), as soluções utilizadas e a atmosfera eletroquímica são livres de O_2 . No entanto, o processo de remoção do O_2 da solução através da saturação do sistema com um gás inerte compreende uma operação unitária adicional ao processo, o que encarece o custo total em escala industrial.

Neste trabalho, estudamos a influência da reação de redução de oxigênio (RRO) na REOG em meio ácido sobre nanopartículas (NPs) de Pt/C comercial e sobre um novo candidato a ânodo, NPs de Pt@Au (do inglês, *core-shell*, ou seja, "casca-núcleo", sendo o núcleo Au e Pt a casca). Utilizamos sistema estacionário convencional e o sistema com controle hidrodinâmico de transporte de massa,³ com ambientes saturados em $N_2 e O_2$

MATERIAL E MÉTODOS

Figura 4. Densidades de corrente pseudo-estacionárias obtidas a partir de cronoamperometrias da eletro-oxidação de glicerol 0,2 mol $L^{-1} + H_2SO_4$ 0,5 mol L^{-1} . (a) NPs de Pt/C e saturação de N₂ (b) NPs de Pt/C e saturação de O₂. (c) NPs de Pt@Au e saturação de N₂. (d) NPs de Pt@Au e saturação de O_2 .

Figura 1. (a) Foto do sistema estacionário real em funcionamento. (b) Foto do sistema em fluxo real em funcionamento, configuração *wall-jet.*³

RESULTADOS E DISCUSSÃO

(a)

Figura 2. (a) Perfil eletroquímico das NPs de Pt/C e Pt@Au em meio ácido. (b) Imagens de HAADF das NPs de Pt @ Au e mapas elementares de EDS individuais.

(b)

0,05 -0,00 j / μA

CONCLUSÕES

A metodologia em fluxo apresentou novos resultados sobre a competição entre RRO e REOG, os quais não são obtidos utilizando um sistema clássico de meia-célula (medida estacionária). As medidas estacionárias não apresentaram diferenças relevantes em relação ao potencial de início e densidade de corrente com o aumento da concentração de O₂. Entretanto, no sistema em fluxo, com o aumento da concentração do O₂, menos álcool é oxidado mesmo sob potencial que o favorece. Adicionalmente, as NPs de Pt@Au apresentaram mais seletividade para a RRO, produzindo altas densidades de corrente quando exposto ao O_2 .

¹MARTINS, C. A. et al. Ethanol vs. glycerol: Understanding the lack of correlation between the oxidation currents and the production of CO2on Pt nanoparticles. Journal of Electroanalytical Chemistry, v. 717–718, p. 231–236, 2014. ²ZANATA, C. R. et al. Rh-decorated PtIrOx nanoparticles for glycerol electrooxidation: Searching for a stable and active catalyst. Applied Catalysis B: Environmental, v. 181, p. 445–455, fev. 2016. ³FONSECA, S. et al. Modified-screen printed electrode in flow system for measuring the electroactivity of nanoparticles towards alcohol electrooxidation. Journal of Electroanalytical Chemistry, v. 789, p. 38-43, mar. 2017. ⁴FRENS, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature **Physical Science**, v. 241, n. 105, p. 20–22, 1 jan. 1973.

Potencial / V vs. ERH

JEMS

Universidade Estadual

de Mato Grosso do Sul

Universidade Federal da Grande Dourados

Parceiros:

Científico e Tecnológico

